Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High-Power, Ultralow-Noise Semiconductor External Cavity Lasers Based on Low-Confinement Optical Waveguide Gain Media

Identifieur interne : 004020 ( Main/Repository ); précédent : 004019; suivant : 004021

High-Power, Ultralow-Noise Semiconductor External Cavity Lasers Based on Low-Confinement Optical Waveguide Gain Media

Auteurs : RBID : Pascal:10-0430671

Descripteurs français

English descriptors

Abstract

For the past several years, we have been developing a new class of high-power, low-noise semiconductor optical gain medium based on the slab-coupled optical waveguide (SCOW) concept. The key characteristics of the SCOW design are (i) large (> 5 x 5 μm), symmetric, fundamental-transverse-mode operation attained through a combination of coupled-mode filtering and low index-contrast, (ii) very low optical confinement factor (F ∼ 0.3-0.5%), and (iii) low excess-optical loss (αi ∼ 0.5 cm-1). The large transverse mode and low confinement factor enables SCOW lasers (SCOWLs) and amplifiers (SCOWAs) having Watt-class output power. The low confinement factor also dictates that the waveguide length be very large (0.5-1 cm) to achieve useful gain, which provides the benefits of small ohmic and thermal resistance. In this paper, we review the operating principles and performance of the SCOW gain medium, and detail its use in 1550-nm single-frequency SCOW external cavity lasers (SCOWECLs). The SCOWECL consists of a double-pass, curved-channel InGaAlAs quantum-well SCOWA and a narrowband (2.5 GHz) fiber Bragg grating (FBG) external cavity. We investigate the impact of the cavity Q on SCOWECL performance by varying the FBG reflectivity. We show that a bench-top SCOWECL having a FBG reflectivity of R = 10% (R = 20%) has a maximum output power of 450 mW (400 mW), linewidth of 52 kHz (28 kHz), and RIN at 2-MHz offset frequency of -155 dB/Hz (-165 dB/Hz).

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0430671

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">High-Power, Ultralow-Noise Semiconductor External Cavity Lasers Based on Low-Confinement Optical Waveguide Gain Media</title>
<author>
<name sortKey="Juodawlkis, Paul W" uniqKey="Juodawlkis P">Paul W. Juodawlkis</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Lincoln Laboratory, Massachusetts Institute of Technology</s1>
<s2>Lexington, MA 02420</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Loh, William" uniqKey="Loh W">William Loh</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Lincoln Laboratory, Massachusetts Institute of Technology</s1>
<s2>Lexington, MA 02420</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="O Donnell, Frederick J" uniqKey="O Donnell F">Frederick J. O Donnell</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Lincoln Laboratory, Massachusetts Institute of Technology</s1>
<s2>Lexington, MA 02420</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Brattain, Michael A" uniqKey="Brattain M">Michael A. Brattain</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Lincoln Laboratory, Massachusetts Institute of Technology</s1>
<s2>Lexington, MA 02420</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Plant, Jason J" uniqKey="Plant J">Jason J. Plant</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Lincoln Laboratory, Massachusetts Institute of Technology</s1>
<s2>Lexington, MA 02420</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0430671</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0430671 INIST</idno>
<idno type="RBID">Pascal:10-0430671</idno>
<idno type="wicri:Area/Main/Corpus">003D45</idno>
<idno type="wicri:Area/Main/Repository">004020</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium Arsenides</term>
<term>Aluminium arsenides</term>
<term>Bragg gratings</term>
<term>Coupled modes</term>
<term>Coupled waveguide</term>
<term>Diffraction gratings</term>
<term>External cavity</term>
<term>External cavity lasers</term>
<term>Gallium Arsenides</term>
<term>Grating in fiber</term>
<term>Indium Arsenides</term>
<term>Line widths</term>
<term>Optical confinement</term>
<term>Optical gain</term>
<term>Optical losses</term>
<term>Optical waveguides</term>
<term>Output power</term>
<term>Quantum wells</term>
<term>Quaternary compounds</term>
<term>Reflectivity</term>
<term>Semiconductor lasers</term>
<term>Transverse mode</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Mode transversal</term>
<term>Mode couplé</term>
<term>Confinement optique</term>
<term>Perte optique</term>
<term>Réseau diffraction</term>
<term>Guide onde optique</term>
<term>Guide onde couplé</term>
<term>Réseau dans fibre</term>
<term>Réseau Bragg</term>
<term>Cavité externe</term>
<term>Puissance sortie</term>
<term>Facteur réflexion</term>
<term>Largeur raie</term>
<term>Puits quantique</term>
<term>Composé quaternaire</term>
<term>Aluminium Arséniure</term>
<term>Gallium Arséniure</term>
<term>Indium Arséniure</term>
<term>Arséniure d'aluminium</term>
<term>Laser semiconducteur</term>
<term>InGaAlAs</term>
<term>Al As Ga In</term>
<term>0130C</term>
<term>4279G</term>
<term>4281W</term>
<term>4255P</term>
<term>4279D</term>
<term>Laser cavité externe</term>
<term>Gain optique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">For the past several years, we have been developing a new class of high-power, low-noise semiconductor optical gain medium based on the slab-coupled optical waveguide (SCOW) concept. The key characteristics of the SCOW design are (i) large (> 5 x 5 μm), symmetric, fundamental-transverse-mode operation attained through a combination of coupled-mode filtering and low index-contrast, (ii) very low optical confinement factor (F ∼ 0.3-0.5%), and (iii) low excess-optical loss (α
<sub>i</sub>
∼ 0.5 cm
<sup>-1</sup>
). The large transverse mode and low confinement factor enables SCOW lasers (SCOWLs) and amplifiers (SCOWAs) having Watt-class output power. The low confinement factor also dictates that the waveguide length be very large (0.5-1 cm) to achieve useful gain, which provides the benefits of small ohmic and thermal resistance. In this paper, we review the operating principles and performance of the SCOW gain medium, and detail its use in 1550-nm single-frequency SCOW external cavity lasers (SCOWECLs). The SCOWECL consists of a double-pass, curved-channel InGaAlAs quantum-well SCOWA and a narrowband (2.5 GHz) fiber Bragg grating (FBG) external cavity. We investigate the impact of the cavity Q on SCOWECL performance by varying the FBG reflectivity. We show that a bench-top SCOWECL having a FBG reflectivity of R = 10% (R = 20%) has a maximum output power of 450 mW (400 mW), linewidth of 52 kHz (28 kHz), and RIN at 2-MHz offset frequency of -155 dB/Hz (-165 dB/Hz).</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA02 i1="01">
<s0>PSISDG</s0>
</fA02>
<fA03 i2="1">
<s0>Proc. SPIE Int. Soc. Opt. Eng.</s0>
</fA03>
<fA05>
<s2>7616</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>High-Power, Ultralow-Noise Semiconductor External Cavity Lasers Based on Low-Confinement Optical Waveguide Gain Media</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Novel in-plane semiconductor lasers IX : 25-28 January 2010, San Francisco, California, United States</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>JUODAWLKIS (Paul W.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LOH (William)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>O'DONNELL (Frederick J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BRATTAIN (Michael A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PLANT (Jason J.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BELYANIN (Alexey A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SMOWTON (Peter M.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Lincoln Laboratory, Massachusetts Institute of Technology</s1>
<s2>Lexington, MA 02420</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>76160X.1-76160X.9</s2>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>SPIE</s1>
<s2>Bellingham, Wash.</s2>
</fA25>
<fA26 i1="01">
<s0>978-0-8194-8012-5</s0>
</fA26>
<fA26 i1="02">
<s0>0-8194-8012-6</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000174684560190</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>4 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0430671</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>For the past several years, we have been developing a new class of high-power, low-noise semiconductor optical gain medium based on the slab-coupled optical waveguide (SCOW) concept. The key characteristics of the SCOW design are (i) large (> 5 x 5 μm), symmetric, fundamental-transverse-mode operation attained through a combination of coupled-mode filtering and low index-contrast, (ii) very low optical confinement factor (F ∼ 0.3-0.5%), and (iii) low excess-optical loss (α
<sub>i</sub>
∼ 0.5 cm
<sup>-1</sup>
). The large transverse mode and low confinement factor enables SCOW lasers (SCOWLs) and amplifiers (SCOWAs) having Watt-class output power. The low confinement factor also dictates that the waveguide length be very large (0.5-1 cm) to achieve useful gain, which provides the benefits of small ohmic and thermal resistance. In this paper, we review the operating principles and performance of the SCOW gain medium, and detail its use in 1550-nm single-frequency SCOW external cavity lasers (SCOWECLs). The SCOWECL consists of a double-pass, curved-channel InGaAlAs quantum-well SCOWA and a narrowband (2.5 GHz) fiber Bragg grating (FBG) external cavity. We investigate the impact of the cavity Q on SCOWECL performance by varying the FBG reflectivity. We show that a bench-top SCOWECL having a FBG reflectivity of R = 10% (R = 20%) has a maximum output power of 450 mW (400 mW), linewidth of 52 kHz (28 kHz), and RIN at 2-MHz offset frequency of -155 dB/Hz (-165 dB/Hz).</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00A30C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B79G</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B40B81W</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B40B55P</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Mode transversal</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Transverse mode</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Modo transversal</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Mode couplé</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Coupled modes</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Confinement optique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Optical confinement</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Perte optique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Optical losses</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Réseau diffraction</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Diffraction gratings</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Guide onde optique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Optical waveguides</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Guide onde couplé</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Coupled waveguide</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Guía onda acoplada</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Réseau dans fibre</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Grating in fiber</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Red en fibra</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Réseau Bragg</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Bragg gratings</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Cavité externe</s0>
<s5>37</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>External cavity</s0>
<s5>37</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Cavidad externa</s0>
<s5>37</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Puissance sortie</s0>
<s5>41</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Output power</s0>
<s5>41</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Potencia salida</s0>
<s5>41</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Facteur réflexion</s0>
<s5>42</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Reflectivity</s0>
<s5>42</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Largeur raie</s0>
<s5>43</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Line widths</s0>
<s5>43</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Puits quantique</s0>
<s5>47</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Quantum wells</s0>
<s5>47</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Composé quaternaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Quaternary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Aluminium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Aluminium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Gallium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Gallium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Indium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>53</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Indium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>53</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Arséniure d'aluminium</s0>
<s2>NK</s2>
<s5>61</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Aluminium arsenides</s0>
<s2>NK</s2>
<s5>61</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Laser semiconducteur</s0>
<s5>62</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Semiconductor lasers</s0>
<s5>62</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>InGaAlAs</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Al As Ga In</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>0130C</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>4279G</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>4281W</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>4255P</s0>
<s4>INC</s4>
<s5>93</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>4279D</s0>
<s4>INC</s4>
<s5>94</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Laser cavité externe</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>External cavity lasers</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>Gain optique</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="29" i2="3" l="ENG">
<s0>Optical gain</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fN21>
<s1>284</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Novel in-plane semiconductor lasers</s1>
<s2>09</s2>
<s3>San Francisco CA USA</s3>
<s4>2010</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004020 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 004020 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:10-0430671
   |texte=   High-Power, Ultralow-Noise Semiconductor External Cavity Lasers Based on Low-Confinement Optical Waveguide Gain Media
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024